R&D ON THE GRID

The Grid’s working now, in a ramping-up sort of way, with projects forming or underway at Grid Cells™ in Michigan and Virginia, pilot programs for manufacturers and funded R&D efforts with OEM partners.

Img_RandD_ThinScientist

Banner_Anchors

Large-scale, funded R&D with long term goals and highly diverse participation are called anchor projects. Run through Grid Cells™ and managed by NCMS, anchor R&D can have sweeping scientific, commercial, and economic impact.

As of late 2013, the early anchor projects are just getting off the ground, so there’s not actually much we can say about them yet. Watch this space for more information as it becomes public – eventually each anchor project will have its own page with information, status updates, and useful tools.

If you have more questions about pilot or anchor projects, contact Danielle Jones, NCMS Business Development Manager:

daniellej@ncms.org   |   (734) 995-0496

Banner_CaseStudies

VOC: Talking and Listening to Ohio’s Backbone Manufacturers

NCMS is pleased to present the 2nd installment of Voice of the Customer: Talking and Listening to Ohio’s Backbone Manufacturers. NCMS partnered with AweSim, the next phase in the Ohio Supercomputer Center’s Blue Collar Computing initiative, to better understand Ohio’s smaller manufacturers. Using Michigan’s study as a model, the 2nd VoC focused on challenges and pain points of backbone manufacturers, but dug deeper into certain topics such as design responsibility and technology development. The 2nd VoC focuses on Ohio manufacturers, but it builds on the findings in Michigan and shows […]

NCMS Grid Portal

Executive Summary Connecting resources and providing a safe place to play was the goal of the Caelynx, Nimbis and JECO pilot project. Linking a small to medium-sized manufacturer (SMM) with an engineering house complete with mentoring to solve a challenge in the cloud. JECO wanted to better serve a customer and to do that, they needed to use finite element analysis (FEA) to compare and evaluate several geometry and material combinations for light-weighting military vehicle armor. Working together, Caelynx and JECO were able to analyze different materials and geometries to […]

SMM Outreach Case Study

The scope of this phase of the VOC SMM Analytical Profiling, was the creation and validation of the profiling model. This report identifies a repeatable approach and opportunities for a widespread application of such analyses.
Read more


Banner_LAMPPg

The Lightweight Automotive Materials Program, or LAMP, is a partnership between NCMS and a host of technology innovators across the country. Funded in part by the U.S .Department of Energy, LAMP is a suite of R&D programs that will drive innovation in advanced lightweight materials development for the automotive industry. New or improved lightweight materials such as composites or titanium alloys have great potential to drastically improve vehicle fuel economy without sacrificing automotive safety.

NCMS_Full_ForLightBG The LAMP objective is to establish the successful development and validation of cost-effective, high-strength materials and technologies that could significantly reduce vehicle weight without compromising cost, performance, safety, or recyclability. The target is to have the automotive industry adopt technology, inserting lightweight materials into production vehicles. The program focuses on improved manufacturability, lowered costs for the deployment of new lightweight materials, and introducing sustainability considerations into the design process.
DOE_Seal NCMS was awarded management of this program by the Department of Energy, Office of Energy Efficiency and Renewable Energy and by the National Energy Technology Laboratory due to its expertise in collaborative R&D program management and industry capability.

Several R&D projects are currently operating under LAMP. All are digital manufacturing initiatives, making use of tools such as high performance computing’s Modeling & Simulation (M&S) capability to support the selection and optimization of lightweight materials for their products during the product design phase. The tools developed in this NCMS program allow companies of all sizes to access and apply cutting edge digital manufacturing techniques in an affordable, revolutionary way.

Banner_LAMP-projectsPg

Thermal Processing of Aluminum Alloys

Partners: Deformation Control Technology, Inc., General Motors Powertrain, and Case Western Reserve University
Background: The primary goal of this project was to develop new predictive software capability that can be used to address the issue of residual stresses and distortions of aluminum alloy components. This project will utilize materials processing, advanced characterization techniques and process simulation and modeling (S&M) to develop and design methodologies for reducing residual stresses and minimizing/eliminating distortions that occur during thermal processes; and to predict the final microstructure and anticipated strength for aluminum alloys. View Executive Report

Ultra-Lightweight Sandwich Composite Constructions for Autobody Applications

Partners: Wayne State University, MAG-IAS, LLC, and Nimbis Services
Project Background: This project modeled revolutionary ultra-lightweight sandwich composite structure technologies for significant weight reduction in platforms such as electric and hybrid vehicles. These structures achieve strength targets and accomplish weight reductions far beyond those feasible using present stamped steel/aluminum welded car body construction methods. View Executive Report

Automotive Component Manufacture in Titanium

Partners: CU ICAR, BMW MC, OKUMA America Corporation, Dassault Systemes Simulia Corp., and SimaFore, LLC.
Project Background: The purpose of this project was to explore the use of titanium as an automotive component material in order to reduce vehicle weight and energy consumption. The benefits are identification of validated titanium grades for automotive use, and creation of a template for identifying and justifying automotive component design in titanium, thereby cost-effectively reducing vehicle weight, and subsequently reducing energy consumption. View Executive Report

Low Cost Resin System for Lightweight PMC Components

Partners: GE Global Research, Plasan Carbon Composite, SimaFore LLC, and Dassault Systemes Simulia Corp.
Project Background: The introduction of polymer matrix composite (PMC) components is highly desirable due to PMC offering excellent weight and property benefits without sacrificing strength.This project was initiated to find a solution to reduce process cycle time and other related costs of PMC components. View Executive Report

Lightweight Material Usage Optimization for Multi-Mode Safety, NVH, & Durability Performance Using HPC

Partners: L&L Products, Altair Engineering, R Systems NA, Inc., and Nimbis Services
Project Background: The project’s goal was to develop new methods to allow automotive Tier 1 and 2 suppliers to effectively access modeling and simulation tools to assist them in developing new lightweight component designs that are capable of meeting OEM performance and safety requirements at a reasonable cost. View Executive Report

Ultra-Fine Grained/Nano Aluminum Material for Connecting Rods

Partners:MAHLE Industries, Incorporated, Engineered Performance Materials (EPM), Department of Energy (DOE)
Project Background: A high strength yet lightweight connecting rod allows for complete powertrain optimization by integrating sophisticated components that contribute to better fuel economy and reduced exhaust emissions. The target of this project was to develop and validate a cost-effective, high-strength, ultra-fine grained/nano-aluminum material for connecting rods and focus on processing steps for con-rod volume production and advanced fracture split technology. View Executive Report

Simplified CFD Analysis of Tow Vehicle & Trailer Bodies

CFD Analysis is commonly used by the major automotive and truck manufacturers, suppliers in smaller niche markets such as trailers and after-market devices don’t. The low level of usage is due to a combination of lack of expertise as well as a scarcity of in-house computational infrastructure needed. Typically, high barriers to entry exist in undertaking any aerodynamic development program, either in designing and building scale models, utilizing full-scale wind tunnels, or starting a CFD program. View Executive Report

Lightweight Fiber Composite Structures with Embedded Communications

This initiative targeted the materials development activities for production and characterization studies of lab-scale composite panels that include embedded fiber optics as a “proof of concept.” The proposed composite structures investigated were continuous-fiber, thermoset pre-preg, multi-laminate fabrications made from unidirectional or woven-fabric glass and hybrid glass/carbon fiber combinations. View Executive Report

Ultra-Lightweight Sandwich Composition: A Predictive Simulation Approach

Studies have shown that a reduction in vehicle weight by only 25% would save the US 750,000 barrels of oil each day reducing domestic fuel consumption by 13% per year and prevent 101 million tons of CO2 from being emitted into our atmosphere. The original goal was a 40% reduction vehicle weight, but further investigations showed that a 60% reduction in vehicle weight was possible with the advent of Ultra-lightweight Composite Constructions. View Executive Report